Относительность движения система отсчета. Относительность движения и система отсчета в физике

Вопросы.

1. Что означают следующие утверждения: скорость относительна, траектория движения относительна, путь относителен?

Это означает, что эти величины (скорость, траектория и путь) для движения различаются в зависимости от того, из какой системы отсчета ведется наблюдение.

2. Покажите на примерах, что скорость, траектория движения и пройденный путь являются относительными величинами.

Например, человек стоит неподвижно на поверхности Земли (нет ни скорости, ни траектории, ни пути), однако в это время Земля вращается вокруг своей оси, и следовательно человек, относительно, например центра Земли, движется по определенной траектории (по окружности), перемещается и имеет определенную скорость.

3. Сформулируйте коротко, в чем заключается относительность движения.

Движение тела (скорость, путь, траектория) различны в разных системах отсчета.

4. В чем основное отличие гелиоцентрической системы от геоцентрической?

В гелиоцентрической системе тело отсчета- Солнце, а в геоцентрической- Земля.

5. Объясните смену дня и ночи на Земле в гелиоцентрической системе (см. рис. 18).

В гелиоцентрической системе смена дня и ночи объясняется вращением Земли.

Упражнения.

1. Вода в реке движется со скоростью 2 м/с относительно берега. По реке плывёт плот. Какова скорость плота относительно берега? относительно воды в реке?

Скорость плота относительно берега - 2 м/с, относительно воды в реке - 0 м/с.

2. В некоторых случаях скорость тела может быть одинаковой в разных системах отсчёта. Например, поезд движется с одной и той же скоростью в системе отсчета, связанной со зданием вокзала, и в системе отсчёта, связанной с растущим у дороги деревом. Не противоречит ли это утверждению о том, что скорость относительна? Ответ поясните.

Если оба тела, с которыми связаны системы отсчета этих тел, остаются неподвижными друг относительно друга, то они связаны с третьей системой отсчета - Землёй, относительно которой и происходят измерения.

3. При каком условии скорость движущегося тела будет одинакова относительно двух систем отсчета?

Если эти системы отсчета неподвижны относительно друг друга.

4. Благодаря суточному вращению Земли человек, сидящий на стуле в своём доме в Москве, движется относительно земной оси со скоростью примерно 900 км/ч. Сравните эту скорость с начальной скоростью пули относительно пистолета, которая равна 250 м/с.

5. Торпедный катер идет вдоль шестидесятой параллели южной широты со скоростью 90 км/ч по отношению к суше. Скорость суточного вращения Земли на этой широте равна 223 м/с. Чему равна в (СИ) и куда направлена скорость катера относительно земной оси, если она движется на восток? на запад?



Относительность механического движения

Движение в физике – это перемещение тела в пространстве, которое обладает своими специфическими особенностями.

Механическое движение можно представить в виде изменения положения конкретного материального тела в пространстве. Все изменения должны происходить относительно друг друга с течением времени.

Типы механического движения

Механическое движение бывает трех основных типов:

  • прямолинейное движение;
  • равномерное движение;
  • криволинейное движение.

Для решения задач в физике принято использовать допущения в виде представления объекта материальной точкой. Это имеет смысл в тех случаях, когда форму, размер и тело можно не учитывать в его истинных параметрах и выбрать изучаемый объект в виде определенной точки.

Существует несколько основных условий, когда применяется в решении задачи метод внедрения материальной точки:

  • в случаях, если размеры тела чрезвычайно малы по отношению к расстоянию, которое оно проходит;
  • в случаях, если тело двигается поступательно.

Поступательное движение возникает в момент, когда все точки материального тела движутся одинаково. Также тело будет двигаться поступательным образом, когда через две точки этого объекта проведут прямую, и она должна смещаться параллельно первоначальному месторасположению.

При начале изучения относительности механического движения вводят понятие системы отсчета. Она образуется вместе с телом отсчета и системой координат, включая часы для отсчета времени движения. Все элементы составляют единую систему отсчета.

Система отсчета

Замечание 2

Телом отсчета считается такое тело, относительно которого определяется положение иных тел, находящихся в движении.

Если не задать дополнительные данные в решение задачи по просчету механического движения, то его нельзя будет заметить, так как все движения тела высчитываются относительно взаимодействия с другими физическими телами.

Ученые для понимания явления ввели дополнительные понятия, в том числе:

  • прямолинейное равномерное движение;
  • скорость перемещения тела.

С их помощью исследователи пытались выяснить, каким образом тело двигалось в пространстве. В частности, можно было определить вид движения тела относительно наблюдателей, которые имели разную скорость. Выяснилось, что результат наблюдения зависит от соотношения скоростей движения тела и наблюдателей относительно друг друга. Во всех расчетах использовались формулы классической механики.

Существует несколько основных систем отсчета, которые применяются при решении задач:

  • подвижные;
  • неподвижные;
  • инерциальные.

При рассмотрении движения относительно подвижной системы отсчета применяют классический закон сложения скоростей. Скорость тела относительно неподвижной системы отсчета будет равна векторной сумме скорости тела относительно подвижной системы отсчета, а также скорости подвижной системы отсчета относительно неподвижной.

$\overline{v} = \overline{v_{0}} + \overline{v_{s}}$, где:

  • $\overline{v}$ - скорость тела по неподвижной системе отсчета,
  • $\overline{v_{0}}$ - это скорость тела по подвижной системе отсчета,
  • $\overline{v_{s}}$ - это скорость дополнительного фактора, который влияет на определение скорости.

Относительность механического движения заключается в относительности скоростей, с которыми перемещаются тела. Скорости тел относительно различных систем отсчета также будут отличаться. Например, скорость человека, находящегося в поезде или самолете будет отличаться в зависимости от того, в какой системе отсчета определяют эти скорости.

Скорости различаются по направлению и величине. Определение конкретного объекта исследования при механическом движении играет важнейшую роль при высчитывании параметров движения материальной точки. Скорости могут определяться в системе отсчета, которая связана с движущимся транспортом, а может быть в относительной зависимости от неподвижной Земли или ее вращения на орбите в космосе.

Такую ситуацию можно смоделировать на простом примере. Двигающийся по железной дороге поезд будет совершать механические движения относительно другого поезда, который двигается на параллельных путях или относительно Земли. Решение задачи зависит напрямую от выбранной системы отсчета. В разных системах отсчета будут различные траектории движения. При механическом движении траектория также является относительной. От выбранной системы отсчета зависит путь, который был пройден телом. При механическом движении путь является относительным.

Развитие относительности механического движения

Также согласно закону инерции, стали формировать инерциальные системы отсчета.

Процесс осознания относительности механического движения занял немалый исторический промежуток времени. Если сначала долгое время считалась приемлемой модель геоцентрической системы мира (Земля – центр Вселенной), то движение тел в разных системах отсчета стали рассматривать во времена известного ученого Николая Коперника, который сформировал гелиоцентрическую модель мира. Согласно ей, планеты Солнечной системы совершают вращение вокруг Солнца, а также совершают вращения вокруг собственной оси.

Поменялась структура системы отсчета, что привело позже к построению прогрессивной гелиоцентрической системы. Эта модель сегодня позволяет решать различные научные цели и задачи, в том числе в сфере прикладной астрономии, когда просчитывается траектории движения звезд, планет, галактик, исходя из метода относительности.

В начале 20 века была сформулирована теория относительности, которая также базируется на основополагающих принципах механического движения и взаимодействия тел.

Все формулы, которые применяются для высчитывания механических движений тел и определения их скорости, имеют смысл на скоростях меньше скорости света в вакууме.

Можно ли быть неподвижным и при этом двигаться быстрее автомобиля Формулы 1? Оказывается, можно. Любое движение зависит от выбора системы отсчета, то есть любое движение относительно. Тема сегодняшнего урока: «Относительность движения. Закон сложения перемещений и скоростей». Мы узнаем, как выбрать систему отсчета в том или ином случае, как при этом найти перемещение и скорость тела.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета - совокупность системы координат и часов, связанных с телом, относительно которого изучается движение. Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона (рис. 1).

Рис. 1. Выбор системы отсчета

Какие же физические величины и понятия зависят от выбора системы отсчета?

1. Положение или координаты тела

Рассмотрим произвольную точку . В различных системах она имеет разные координаты (рис. 2).

Рис. 2. Координаты точки в разных системах координат

2. Траектория

Рассмотрим траекторию точки, находящейся на пропеллере самолета, в двух системах отсчета: системе отсчета, связанной с пилотом, и системе отсчета, связанной с наблюдателем на Земле. Для пилота данная точка будет совершать круговое вращение (рис. 3).

Рис. 3. Круговое вращение

В то время как для наблюдателя на Земле траекторией данной точки будет винтовая линия (рис. 4). Очевидно, что траектория зависит от выбора системы отсчета.

Рис. 4. Винтовая траектория

Относительность траектории. Траектории движения тела в различных системах отсчета

Рассмотрим, как меняется траектория движения в зависимости от выбора системы отсчета на примере задачи.

Задача

Какой будет траектория точки на конце пропеллера в разных СО?

1. В СО, связанной с летчиком самолета.

2. В СО, связанной с наблюдателем на Земле.

Решение:

1. Относительно самолета ни летчик, ни пропеллер не перемещаются. Для летчика траектория точки будет казаться окружностью (рис. 5).

Рис. 5. Траектория точки относительно летчика

2. Для наблюдателя на Земле точка движется двумя способами: вращаясь и двигаясь вперед. Траектория будет винтовой (рис. 6).

Рис. 6. Траектория точки относительно наблюдателя на Земле

Ответ : 1) окружность; 2) винтовая линия.

На примере данной задачи мы убедились, что траектория - это относительное понятие.

В качестве самостоятельной проверки предлагаем вам решить следующую задачу:

Какой будет траектория точки на конце колеса относительно центра колеса, если это колесо совершает поступательное движение вперед, и относительно точек, находящихся на земле (неподвижный наблюдатель)?

3. Перемещение и путь

Рассмотрим ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег. Перемещение пловца относительно рыбака, сидящего на берегу, и относительно плота будет разным (рис. 7).

Перемещение относительно земли называют абсолютным, а относительно движущегося тела - относительным. Перемещение движущегося тела (плота) относительно неподвижного тела (рыбака) называют переносным.

Рис. 7. Перемещение пловца

Из примера следует, что перемещение и путь являются относительными величинами.

4. Скорость

С помощью предыдущего примера можно легко показать, что скорость тоже относительная величина. Ведь скорость - это отношение перемещения ко времени. Время у нас одно и то же, а перемещение разное. Следовательно, скорость будет разной.

Зависимость характеристик движения от выбора системы отсчета называется относительностью движения .

В истории человечества были и драматичные случаи, связанные как раз с выбором системы отсчета. Казнь Джордано Бруно, отречение Галилео Галилея - все это следствия борьбы между сторонниками геоцентрической системы отсчета и гелиоцентрической системы отсчета. Уж очень сложно было человечеству привыкнуть к мысли о том, что Земля - это вовсе не центр мироздания, а вполне обычная планета. А движение можно рассматривать не только относительно Земли, это движение будет абсолютным и относительно Солнца, звезд или любых других тел. Описывать движение небесных тел в системе отсчета, связанной с Солнцем, намного удобнее и проще, это убедительно показали сначала Кеплер, а потом и Ньютон, который на основании рассмотрения движения Луны вокруг Земли вывел свой знаменитый закон всемирного тяготения.

Если мы говорим, что траектория, путь, перемещение и скорость являются относительными, то есть зависят от выбора системы отсчета, то про время мы этого не говорим. В рамках классической, или Ньютоновой, механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Рассмотрим, как находить перемещение и скорость в одной системе отсчета, если они нам известны в другой системе отсчета.

Рассмотрим предыдущую ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег.

Как же связано перемещение пловца относительно неподвижной СО (связанной с рыбаком) с перемещением относительно подвижной СО (связанной с плотом) (рис. 8)?

Рис. 8. Иллюстрация к задаче

Перемещение в неподвижной системе отсчета мы назвали . Из треугольника векторов следует, что . Теперь перейдем к поиску соотношения между скоростями. Вспомним, что в рамках Ньютоновой механики время является абсолютной величиной (время во всех системах отсчета течет одинаково). Значит, каждое слагаемое из предыдущего равенства можно разделить на время. Получаем:

Это скорость, с которой движется пловец для рыбака;

Это собственная скорость пловца;

Это скорость плота (скорость течения реки).

Задача на закон сложения скоростей

Рассмотрим закон сложения скоростей на примере задачи.

Задача

Два автомобиля движутся навстречу друг другу: первый автомобиль со скоростью , второй - со скоростью . С какой скоростью сближаются автомобили (рис. 9)?

Рис. 9. Иллюстрация к задаче

Решение

Применим закон сложения скоростей. Для этого перейдем от привычной СО, связанной с Землей, к СО, связанной с первым автомобилем. Таким образом, первый автомобиль становится неподвижным, а второй движется к нему со скоростью (относительная скорость). С какой скоростью, если первый автомобиль неподвижен, вращается вокруг первого автомобиля Земля? Она вращается со скоростью и скорость направлена по направлению скорости второго автомобиля (переносная скорость). Два вектора, которые направлены вдоль одной прямой, суммируются. .

Ответ: .

Границы применимости закона сложения скоростей. Закон сложения скоростей в теории относительности

Долгое время считалось, что классический закон сложения скоростей справедлив всегда и применим ко всем системам отсчета. Однако порядка лет назад оказалось, что в некоторых ситуациях данный закон не работает. Рассмотрим такой случай на примере задачи.

Представьте себе, что вы находитесь на космической ракете, которая движется со скоростью . И капитан космической ракеты включает фонарик в направлении движения ракеты (рис. 10). Скорость распространения света в вакууме составляет . Какой же будет скорость света для неподвижного наблюдателя на Земле? Будет ли она равна сумме скоростей света и ракеты?

Рис. 10. Иллюстрация к задаче

Дело в том, что тут физика сталкивается с двумя противоречащими концепциями. С одной стороны, согласно электродинамике Максвелла, максимальная скорость - это скорость света, и она равна . С другой стороны, согласно механике Ньютона, время является абсолютной величиной. Задача решилась, когда Эйнштейн предложил специальную теорию относительности, а точнее ее постулаты. Он первым предположил, что время не является абсолютным. То есть где-то оно течет быстрее, а где-то медленнее. Конечно, в нашем мире небольших скоростей мы не замечаем данный эффект. Для того чтобы почувствовать эту разницу, нам необходимо двигаться со скоростями, близкими к скорости света. На основании заключений Эйнштейна был получен закон сложения скоростей в специальной теории относительности. Он выглядит следующим образом:

Это скорость относительно неподвижной СО;

Это скорость относительно подвижной СО;

Это скорость подвижной СО относительно неподвижной СО.

Если подставить значения из нашей задачи, то получим, что скорость света для неподвижного наблюдателя на Земле будет составлять .

Противоречие было решено. Также можно убедиться, что если скорости очень малы по сравнению со скоростью света, то формула для теории относительности переходит в классическую формулу для сложения скоростей.

В большинстве случаев мы будем пользоваться классическим законом.

Сегодня мы выяснили, что движение зависит от системы отсчета, что скорость, путь, перемещение и траектория - это понятия относительные. А время в рамках классической механики - понятие абсолютное. Научились применять полученные знания, разобрав некоторые типовые примеры.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.ayp.ru ().

Домашнее задание

  1. Дать определение относительности движения.
  2. Какие физические величины зависят от выбора системы отсчета?

В курсе физики 7 класса упоминалось об относительности механического движения. Рассмотрим этот вопрос более подробно на примерах и сформулируем, в чём конкретно заключается относительность движения.

Человек идёт по вагону против движения поезда (рис. 16). Скорость поезда относительно поверхности земли равна 20 м/с, а скорость человека относительно вагона равна 1 м/с. Определим, с какой скоростью и в каком направлении движется человек относительно поверхности земли.

Рис. 16. Скорость движения человека относительно вагона и относительно земли различна по модулю и направлению

Будем рассуждать так. Если бы человек не шёл по вагону, то за 1 с он переместился бы вместе с поездом на расстояние, равное 20 м. Но за это же время он прошёл расстояние, равное 1 м, против хода поезда. Поэтому за время, равное 1 с, он сместился относительно поверхности земли только на 19 м в направлении движения поезда. Значит, скорость человека относительно поверхности земли равна 19 м/с и направлена в ту же сторону, что и скорость поезда. Таким образом, в системе отсчёта, связанной с поездом, человек движется со скоростью 1 м/с, а в системе отсчёта, связанной с каким-либо телом на поверхности земли, - со скоростью 19 м/с, причём направлены эти скорости в противоположные стороны. Отсюда следует, что скорость относительна, т. е. скорость одного и того же тела в разных системах отсчёта может быть различной как по числовому значению, так и по направлению.

Теперь обратимся к другому примеру. Представьте вертолёт, вертикально опускающийся на землю. Относительно вертолёта любая точка винта, например точка А (рис. 17), будет всё время двигаться по окружности, которая на рисунке изображена сплошной линией. Для наблюдателя, находящегося на земле, та же самая точка будет двигаться по винтовой траектории (штриховая линия). Из этого примера ясно, что траектория движения тоже относительна, т. е. траектория движения одного и того же тела может быть различной в разных системах отсчёта.

Рис. 17. Относительность траектории и пути

Следовательно, путь является величиной относительной, так как он равен сумме длин всех участков траектории, пройденных телом за рассматриваемый промежуток времени. Это особенно наглядно проявляется в тех случаях, когда физическое тело движется в одной системе отсчёта и покоится в другой. Например, человек, сидящий в движущемся поезде, проходит определённый путь s в системе, связанной с землёй, а в системе отсчёта, связанной с поездом, его путь равен нулю.

Таким образом,

  • относительность движения проявляется в том, что скорость, траектория, путь и некоторые другие характеристики движения относительны, т. е. они могут быть различны в разных системах отсчёта

Понимание того, что движение одного и того же тела можно рассматривать в разных системах отсчёта, сыграло огромную роль в развитии взглядов на строение Вселенной.

С давних пор люди замечали, что звёзды в течение ночи, так же как и Солнце днём, перемещаются по небу с востока на запад, двигаясь по дугам и делая за сутки полный оборот вокруг Земли. Поэтому в течение многих столетий считалось, что в центре мира находится неподвижная Земля, а вокруг неё обращаются все небесные тела. Такая система мира была названа геоцентрической (греческое слово «гео» означает «земля»).

Во II в. александрийский учёный Клавдий Птолемей обобщил имеющиеся сведения о движении светил и планет в геоцентрической системе и сумел составить довольно точные таблицы, позволяющие определять положение небесных тел в прошлом и будущем, предсказывать наступление затмений и т. д.

Однако со временем, когда точность астрономических наблюдений возросла, стали обнаруживаться расхождения между вычисленными и наблюдаемыми положениями планет. Вносимые при этом исправления делали теорию Птолемея очень сложной и запутанной. Появилась необходимость замены геоцентрической системы мира.

Новые взгляды на строение Вселенной были подробно изложены в XVI в. польским учёным Николаем Коперником. Он считал, что Земля и другие планеты движутся вокруг Солнца, одновременно вращаясь вокруг своих осей. Такая система мира называется гелиоцентрической, поскольку в ней за центр Вселенной принимается Солнце (по-гречески «гелиос»).

Таким образом, в гелиоцентрической системе отсчёта движение небесных тел рассматривается относительно Солнца, а в геоцентрической - относительно Земли.

Как же с помощью системы мира Коперника можно объяснить видимое нами суточное обращение Солнца вокруг Земли? На рисунке 18 схематично изображён земной шар, освещаемый с одной стороны солнечными лучами, и человек (наблюдатель), который в течение суток находится в одном и том же месте Земли. Вращаясь вместе с Землёй, он наблюдает за перемещением светил.

Рис. 18. В гелиоцентрической системе мира видимое движение по небу Солнца днём и звёзд ночью объясняется вращением Земли вокруг своей оси

Воображаемая ось, вокруг которой вращается Земля, как бы пронзает земной шар, проходя через Северный (N) и Южный (S) географические полюсы. Стрелочка указывает направление вращения Земли - с запада на восток.

На рисунке 18, а земной шар изображён в тот момент времени, когда он как бы вывозит наблюдателя с тёмной ночной стороны на освещенную Солнцем, дневную. Но наблюдатель, вращаясь вместе с Землёй относительно её оси с запада на восток со скоростью, приблизительно равной 200 м/с 1 , тем не менее не ощущает этого движения, как не ощущаем его мы с вами. Поэтому ему кажется, что Солнце обращается вокруг Земли, поднимаясь из-за горизонта, перемещается в течение дня (рис. 18, б) с востока на запад, а вечером уходит за горизонт (рис. 18, в). Затем наблюдатель видит перемещение звёзд с востока на запад в течение ночи (рис. 18, г).

Итак, по системе мира Коперника видимое вращение Солнца и звёзд, т. е. смена дня и ночи, объясняется вращением Земли вокруг своей оси. Время, за которое земной шар делает полный оборот, называется сутками.

Гелиоцентрическая система мира оказалась гораздо более удачной, чем геоцентрическая, при решении многих научных и практических задач.

Таким образом, применение знаний об относительности движения позволило по-новому взглянуть на строение Вселенной. А это, в свою очередь, помогло впоследствии открыть физические законы, описывающие движение тел в Солнечной системе и объясняющие причины такого движения.

Вопросы

  1. В чём проявляется относительность движения? Ответ проиллюстрируйте примерами.
  2. В чём основное отличие гелиоцентрической системы мира от геоцентрической?
  3. Объясните смену дня и ночи на Земле в гелиоцентрической системе (см. рис. 18).

Упражнение 9

  1. Вода в реке движется со скоростью 2 м/с относительно берега. По реке плывёт плот. Какова скорость плота относительно берега; относительно воды в реке?
  2. В некоторых случаях скорость тела может быть одинаковой в разных системах отсчёта. Например, поезд движется с одной и той же скоростью в системе отсчёта, связанной со зданием вокзала, и в системе отсчёта, связанной с растущим у дороги деревом. Не противоречит ли это утверждению о том, что скорость относительна? Ответ поясните.
  3. При каком условии скорость движущегося тела будет одинакова относительно двух систем отсчёта?
  4. Благодаря суточному вращению Земли человек, сидящий на стуле в своём доме в Москве, движется относительно земной оси со скоростью примерно 900 км/ч. Сравните эту скорость с начальной скоростью пули относительно пистолета, которая равна 250 м/с.
  5. Торпедный катер идёт вдоль шестидесятой параллели южной широты со скоростью 90 км/ч по отношению к суше. Скорость суточного вращения Земли на этой широте равна 223 м/с. Чему равна (в СИ) и куда направлена скорость катера относительно земной оси, если он движется на восток; на запад?

1 Скорость вращения точек поверхности Земли относительно оси зависит от широты местности: она возрастает от нуля (на полюсах) до 465 м/с (на экваторе).

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения . Например, в декартовых координатах х, y, z движение точки определяется уравнениями x = f 1 (t) {\displaystyle x=f_{1}(t)} , y = f 2 (t) {\displaystyle y=f_{2}(t)} , z = f 3 (t) {\displaystyle z=f_{3}(t)} .

В современной физике любое движение считается относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.

Другие определения

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Так, Ньютон считал выделенной системой отсчёта абсолютное пространство , а физики XIX века полагали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа абсолютной системой отсчёта (АСО). Окончательно предположения о существовании привилегированной системы отсчёта были отвергнуты теорией относительности . В современных представлениях никакой абсолютной системы отсчёта не существует, так как законы природы , выраженные в тензорной форме , имеют один и тот же вид во всех системах отсчёта - то есть во всех точках пространства и во все моменты времени. Это условие - локальная пространственно-временная инвариантность - является одним из проверяемых оснований физики.

Иногда абсолютной системой отсчета называют систему, связанную с реликтовым излучением , то есть инерциальную систему отсчета, в которой реликтовое излучение не имеет дипольной анизотропии .

Тело отсчёта

В физике телом отсчёта называется совокупность неподвижных относительно друг друга тел, по отношению к которым рассматривается движение (в связанной с ними



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то