Приготовление и описание микропрепаратов клеток. Лаборатория микроскопирования

Лабораторная работа № 1

Тема: «Приготовление и описание микропрепаратов клеток различных организмов».

Цель работы: закрепить умение готовить микропрепараты и рассматривать их под микроскопом, находить особенности строения клеток различных организмов, владеть терминологией темы.

Оборудование: кожица чешуи луковицы, эпителиальные клетки из полости рта человека, культура сенной палочки, стакан с водой, микроскоп, чайная ложечка, покровное и предметное стекла, синие чернила, йод, микропрепараты клеток многоклеточного животного организма, тетрадь, ручка, простой карандаш, линейка,

Ход работы:

Работа 1.

1. Рассмотрите на рисунке последовательность приготовления препарата кожицы чешуи лука.
2. Подготовьте предметное стекло, тщательно протерев его марлей.
3. Пипеткой нанесите 1-2 капли воды на предметное стекло.
4. При помощи препаровальной иглы осторожно снимите маленький кусочек прозрачной кожицы с внутренней поверхности чешуи лука. Положите кусочек кожицы в каплю воды и расправьте кончиком иглы.
5. Накройте кожицу покровным стеклом, как показано на рисунке.
6. Рассмотрите приготовленный препарат при малом увеличении. Отметьте, какие части клетки вы видите.
7. Окрасьте препарат раствором йода. Для этого нанесите на предметное стекло каплю раствора йода. Фильтровальной бумагой с другой стороны оттяните лишний раствор.
8. Рассмотрите окрашенный препарат. Какие изменения произошли ?

9. Рассмотрите препарат при большом увеличении. Найдите на нем хлоропласты в клетках листа, темную полосу, окружающую клетку, оболочку; под ней золотистое вещество - цитоплазму (она может занимать всю клетку или находиться около стенок). В цитоплазме хорошо видно ядро. Найдите вакуоль с клеточным соком (она отличается от цитоплазмы по цвету).

10. Зарисуйте 2-3 клетки кожицы лука. Обозначьте оболочку, цитоплазму, ядро, вакуоль с клеточным соком.
В цитоплазме растительной клетки находятся многочисленные мелкие тельца - пластиды. При большом увеличении они хорошо видны. В клетках разных органов число пластид различно.
У растений пластиды могут быть разных цветов: зеленые, желтые или оранжевые и бесцветные. В клетках кожицы чешуи лука, например, пластиды бесцветные.

Работа 2.

1. Приготовьте микропрепарат бактерии сенной палочки.

2. Рассмотрите препараты под микроскопом.

3. Рассмотрите готовые микропрепараты клеток многоклеточного животного организма.

4.Сопоставьте увиденное с изображением объекта на рисунке.

Работа 3


  1. Рассмотрите готовые микропрепараты клеток многоклеточных животных

  2. Сопоставьте увиденное с изображением объекта на рисунке.

3. Обозначьте органоиды клетки, изображенные на рис. 4

Лабораторная работа № 2

Тема: “Наблюдение явления плазмолиза и деплазмолиза”

Цель: убедиться в существовании явления плазмолиза и деплазмолиза в живых клетках растений и скорости прохождения физиологических процессов.

Оборудование: микроскопы, предметные и покровные стекла, стеклянные палочки, стаканы с водой, фильтровальная бумага, раствор поваренной соли, репчатый лук.

Ход работы


  1. Снимите нижнюю кожицу чешуи лука (4мм 2);

  2. Приготовьте микропрепарат, рассмотрите и зарисуйте 4-5 клеток увиденного;

  3. С одной стороны покровного стекла нанесите несколько капель раствора поваренной соли, а с другой стороны полоской фильтровальной бумаги оттяните воду;

  4. Рассмотрите микропрепарат в течение нескольких секунд. Обратите внимание на изменения, произошедшие с мембранами клеток и время за которое эти изменения произошли. Зарисуйте изменившийся объект.

  5. Нанесите несколько капель дистиллированной воды у края покровного стекла и оттяните ее с другой стороны фильтровальной бумагой, смывая плазмолизирующий раствор.

  6. В течение нескольких минут рассматривайте микропрепарат под микроскопом. Отметьте изменения положения мембран клеток и время, за которое эти изменения произошли.

  7. Сопоставьте увиденное с изображением объекта на рисунке 1.

  8. Зарисуйте изучаемый объект.

  9. Сделайте вывод в соответствии с целью работы, отметив скорость плазмолиза и деплазмолиза. Объясните разницу в скорости этих двух процессов.
Ответьте на вопросы:

1. Куда двигалась вода (в клетки или из них) при помещении ткани в раствор соли?

2.Чем можно объяснить такое направление движения воды?

3. Куда двигалась вода при помещении ткани в воду? Чем это объясня­ется?

4. Как вы думаете, что бы могло произойти в клетках, если бы их оставили в растворе соли на длительное время?

5. Можно ли ис­пользовать раствор соли для уничтожения сорняков?

6. Дайте определение терминам – плазмолиз, деплазмолиз, осмос, тургор.
7. Объясните, почему в варенье яблоки становятся менее сочными?

Рис 1. Плазмолиз и деплазмолиз

Лабораторная работа № 3

Тема: «Сравнение строения клеток растений и животных, грибов, бактерий».

Цель: научитьсянаходить особенности строения клеток различных организмов, сравнивать их между собой; владеть терминологией темы.

Оборудование: микроскопы, предметные и покровные стекла, стаканы с водой, стеклянные палочки, лист растения элодеи, дрожжи, культура сенной палочки, микропрепараты клеток многоклеточных животных.

Работа 1.

1.Приготовьте препарат клеток листа элодеи. Для этого отделите лист от стебля, положите его в каплю воды на предметное стекло и накройте покровным стеклом.
2. Рассмотрите препарат под микроскопом. Найдите в клетках хлоропласты.
3. Зарисуйте строение клетки листа элодеи. Сделайте надписи к своему рисунку. 4.Рассмотрите рисунок 1. Сделайте вывод о форме, размерах клеток разных органов растений


Рис. 1. Окраска, форма и размеры клеток разных органов растений

Работа 2.

1.Снимите чайной ложечкой немного слизи с внутренней стороны щеки. 2. Поместите слизь на предметное стекло и подкрасьте разбавленными в воде синими чернилами. Накройте препарат покровным стеклом. 3. Рассмотрите препарат под микроскопом.

Работа 3


  1. Рассмотрите готовый микропрепарат клеток многоклеточного животного организма.
2. Сопоставьте увиденное на уроке с изображением объектов на таблицах.

  1. Сравните между собой эти клетки.

  2. Результаты сравнения занесите в таблицу 1

Ответьте на вопросы:


  • В чем заключается сходство и различие клеток?

  • Каковы причины сходства и различия клеток разных организмов?

Практическая работа

Тема: «Составление простейших схем скрещивания».

Цель: научиться выписывать типы гамет, образуемые организмами с заданными генотипами; кратко записывать условие генетических задач; решать ситуационные задачи по генетике; использовать навыки генетической терминологии.

Оборудование: учебник, тетрадь, условия задач, ручка.

Ход работы:

Задание 1

Выпишите все типы гамет, образуемые организмами, имеющие следующие генотипы: ААbb, Aa, MmPP, PPKk, AabbCc, AabbCcPP, AaBbCc.

Выписывая гаметы, необходимо помнить, что у организма, гомозиготного по одному (АА) или нескольким (ААbbcc) генам, все гаметы одинаковы по этим генам, так как несут один и тот же аллель.

В случае гетерозиготности по одному гену (Аа) организм образует два типа гамет, несущие разные его аллели. Дигетерозиготный организм (АаВb) образует четыре типа гамет. В целом организм образует тем больше типов гамет, чем по большему числу генов он гетерозиготен. Общее число типов гамет равно 2 в степени n, где n- число генов в гетерозиготном состоянии. Выписывая гаметы, необходимо руководствоваться законом «чистоты» гамет, в соответствии с которым каждая гамета несет по одному из каждой пары аллельных генов.

Задание 2

Научитесь кратко записывать условие генетической ситуационной задачи и ее решение.

При краткой записи условия генетической задачи доминантный признак обозначают прописной (А), а рецессивный – строчной (а) буквой с обозначением соответствующего варианта признака. Генотип организма, имеющего доминантный признак, без дополнительных указаний на его гомо- или гетерозиготность в условии задачи, обозначается А?, где вопрос отражает необходимость установления генотипа в ходе решения задачи. Генотип организма с рецессивными признаками всегда гомозиготен по рецессивному аллелю – аа. Признаки, сцепленные с полом обозначаются в случае Х – сцепленного наследования как Хª или ХА

Пример краткой записи условия и решения задачи

Задача. У человека вариант карего цвета глаз доминирует над вариантом голубого цвета. Голубоглазая женщина выходит замуж за гетерозиготного кареглазого мужчину. Какой цвет глаз может быть у детей?

Краткая запись условия Краткая запись решения

А - карий цвет глаз Родители- Р аа х Аа

А – голубой цвет глаз гаметы - G а А, а

Родители: аа х Аа потомство - F Аа аа

Потомство? карий цвет голубой цвет

Задание 3

Кратко запиши условие генетической ситуационной задачи и ее решение.

Задача: Учеловека близорукость доминирует над нормальным зрением. У близоруких родителей родился ребенок с нормальным зрением. Каков генотип родителей? Какие еще дети могут быть от этого брака?

Практическая работа

Тема: «Решение генетических задач».

Цель: научиться решать генетические задачи; объяснять влияние внешних факторов на проявление признака; использовать навыки генетической терминологии.

Оборудование: учебник, тетрадь, условия задач, ручка.

Ход работы:

1. Вспомнить основные законы наследования признаков.

2. Коллективный разбор задач на моногибридное и дигибридное скрещивание.

3. Самостоятельное решение задач на моногибридное и дигибридное скрещивание, подробно описывая ход решения и сформулировать полный ответ.

4. Коллективное обсуждение решения задач между учащимися и учителем.

5. Сделать вывод.

Задачи на моногибридное скрещивание

Задача № 1. У крупного рогатого скота ген, обусловливающий черную окраску шерсти, доминирует над геном, определяющим красную окраску. Какое потомство можно ожидать от скрещивания гомозиготного черного быка и красной коровы?

Разберем решение этой задачи. Вначале введем обозначения. В генетике для генов приняты буквенные символы: доминантные гены обозначают прописными буквами, рецессивные - строчными. Ген черной окраски доминирует, поэтому его обозначим А. Ген красной окраски шерсти рецессивен - а. Следовательно, генотип черного гомозиготного быка будет АА. Каков же генотип у красной коровы? Она обладает рецессивным признаком, который может проявиться фенотипически только в гомозиготном состоянии (организме). Таким образом, ее генотип аа. Если бы в генотипе коровы был хотя бы один доминантный ген А, то окраска шерсти у нее не была бы красной. Теперь, когда генотипы родительских особей определены, необходимо составить схему теоретического скрещивания

Черный бык образует один тип гамет по исследуемому гену - все половые клетки будут содержать только ген А. Для удобства подсчета выписываем только типы гамет, а не все половые клетки данного животного. У гомозиготной коровы также один тип гамет - а. При слиянии таких гамет между собой образуется один, единственно возможный генотип - Аа, т.е. все потомство будет единообразно и будет нести признак родителя, имеющего доминантный фенотип - черного быка..

Таким образом, можно записать следующий ответ: при скрещивании гомозиготного черного быка и красной коровы в потомстве следует ожидать только черных гетерозиготных телят

Следующие задачи следует решить самостоятельно, подробно описав ход решения и сформулировав полный ответ.

Задача № 2. Какое потомство можно ожидать от скрещивания коровы и быка, гетерозиготных по окраске шерсти?

Задача № 3. У морских свинок вихрастая шерсть определяется доминантным геном, а гладкая - рецессивным.

1. Скрещивание двух вихрастых свинок между собой дало 39 особей с вихрастой шерстью и 11 гладкошерстных животных. Сколько среди особей, имеющих доминантный фенотип, должно оказаться гомозиготных по этому признаку?

2. Морская свинка с вихрастой шерстью при скрещивании с особью, обладающей гладкой шерстью, дала в потомстве 28 вихрастых и 26 гладкошерстных потомков. Определите генотипы родителей и потомков.

Задачи на ди- и полигибридное скрещивание

Задача № 7. Выпишите гаметы организмов со следующими генотипами: ААВВ; aabb; ААЬЬ; ааВВ; АаВВ; Aabb; АаВЬ; ААВВСС; ААЬЬСС; АаВЬСС; АаВЬСс.

Разберем один из примеров. При решении подобных задач необходимо руководствоваться законом чистоты гамет: гамета генетически чиста, так как в нее попадает только один ген из каждой аллельной пары. Возьмем, к примеру, особь с генотипом АаВbСс. Из первой пары генов - пары А - в каждую половую клетку попадает в процессе мейоза либо ген А, либо ген а. В ту же гамету из пары генов В, расположенных в другой хромосоме, поступает ген В или b. Третья пара также в каждую половую клетку поставляет доминантный ген С или его рецессивный аллель - с. Таким образом, гамета может содержать или все доминантные гены - ABC, или же рецессивные - abc, а также их сочетания: АВс, AbC, Abe, аВС, аВс, а bС.

Чтобы не ошибиться в количестве сортов гамет, образуемых организмом с исследуемым генотипом, можно воспользоваться формулой N = 2n, где N - число типов гамет, а n - количество гетерозиготных пар генов. В правильности этой формулы легко убедиться на примерах: гетерозиготаАа имеет одну гетерозиготную пару; следовательно, N = 21 = 2. Она образует два сорта гамет: А и а. ДигетерозиготаАаВЬ содержит две гетерозиготные пары: N = 22 = 4, формируются четыре типа гамет: АВ, Ab, aB, ab. ТригетерозиготаАаВЬСс в соответствии с этим должна образовывать 8 сортов половых клеток N = 23 = 8), они уже выписаны выше.

Задача № 8. У крупного рогатого скота ген комолости доминирует над геном рогатости, а ген черного цвета шерсти - над геном красной окраски. Обе пары генов находятся в разных парах хромосом.

1. Какими окажутся телята, если скрестить гетерозиготных по обеим парам

Признаков быка и корову?

2. Какое потомство следует ожидать от скрещивания черного комолого быка, гетерозиготного по обеим парам признаков, с красной рогатой коровой?

Дополнительные задачи к лабораторной работе

Задача № 1. На звероферме получен приплод в 225 норок. Из них 167 животных имеют коричневый мех и 58 норок голубовато-серой окраски. Определите генотипы исходных форм, если известно, что ген коричневой окраски доминирует над геном, определяющим голубовато-серый цвет шерсти.

Задача № 2. У человека ген карих глаз доминирует над геном, обусловливающим голубые глаза. Голубоглазый мужчина, один из родителей которого имел карие глаза, женился на кареглазой женщине, у которой отец имел карие глаза, а мать - голубые. Какое потомство можно ожидать от этого брака?

Задача № 3. Альбинизм наследуется у человека как рецессивный признак. В семье, где один из супругов альбинос, а другой имеет пигментированные волосы, есть двое детей. Один ребенок альбинос, другой - с окрашенными волосами. Какова вероятность рождения следующего ребенка-альбиноса?

Задача № 4. У собак черный цвет шерсти доминирует над кофейным, а короткая шерсть - над длинной. Обе пары генов находятся в разных хромосомах.

1. Какой процент черных короткошерстных щенков можно ожидать от скрещивания двух особей, гетерозиготных по обоим признакам?

2. Охотник купил черную собаку с короткой шерстью и хочет быть уверен, что она не несет генов длинной шерсти кофейного цвета. Какого партнера по фенотипу и генотипу надо подобрать для скрещивания, чтобы проверить генотип купленной собаки?

Задача № 5. У человека ген карих глаз доминирует над геном, определяющим развитие голубой окраски глаз, а ген, обусловливающий умение лучше владеть правой рукой, преобладает над геном, определяющим развитие леворукости. Обе пары генов расположены в разных хромосомах. Какими могут быть дети, если родители их гетерозиготны?

Задача №6. У человека рецессивный ген а детерминирует врождённую глухонемоту. Наследственно глухонемой мужчина женился на женщине, имеющей нормальный слух. Можно ли определить генотип матери ребёнка?

Задача №7. Из желтого семени гороха получено растение, которое дало 215 семян, из них 165 желтых и 50 зелёных. Каковы генотипы всех форм?

Задача№8. Отец и мать ощущают горький вкус фенилтиомочевины. Двое из четверых детей не чувствуют вкуса этого препарата. Принимая, что различия по чувствительности к фенилтиомочевине моногенны, определите доминантна или рецессивна нечувствительность к фенилтиомочевине.

Под лупой можно рассматривать части растений непосредственно, без всякой обработки.Чтобы рассмотреть что-либо под микроскопом, нужно приготовить микропрепарат. Объект помещают на предметное стекло. Для лучшей видимости и сохранности его кладут в каплю воды и покрывают сверху очень тонким покровным стеклом. Такой препарат называют временным, после работы его можно смыть со стекла. Но можно сделать и постоянный препарат, который будет служить многие годы. Тогда объект заключают не в воду, а в специальное прозрачное смолистое вещество, которое быстро затвердевает, прочно склеивая предметное и покровное стёкла. Существуют разнообразные красители, с помощью которых окрашивают препараты. Так получают постоянные окрашенные препараты.

Что делаем. Приготовьте микроскоп к работе, настройте свет. Предметное и покровное стёкла протрите салфеткой. Пипеткой капните каплю слабого раствора йода на предметное стекло (1).

Что делать. Возьмите луковицу. Разрежьте её вдоль и снимите наружные чешуи. С мясистой чешуи оторвите иголкой кусочек поверхностной плёнки пинцетом. Положите его в каплю воды на предметном стекле (2).

Осторожно расправьте кожицу препаровальной иглой (3).

Что делать. Накройте покровным стеклом (4).

Временный микропрепарат кожицы лука готов (5).

Что делаем. Приготовленный микропрепарат начните рассматривать при увеличении в 56 раз (объектив х8, окуляр х7). Осторожно передвигая предметное стекло по предметному столику, найдите такое место на препарате, где лучше всего видны клетки.Что наблюдаем. На микропрепарате видны продолговатые клетки, плотно прилегающие одна к другой (6).

Что делаем. Можно рассмотреть клетки на микроскопе при увеличении в 300 раз (объектив х20, окуляр х15).

Что наблюдаем. При большом увеличении (7) можно рассмотреть плотную прозрачную оболочку с более тонкими участками — порами. Внутри клетки находится бесцветное вязкое вещество — цитоплазма (окрашена йодом).

В цитоплазме находится небольшое плотное ядро, в котором находится ядрышко. Почти во всех клетках, особенно в старых, хорошо заметны полости — вакуоли.

Вывод: живой растительный организм состоит из клеток. Содержимое клетки представлено полужидкой прозрачной цитоплазмой, в которой находятся более плотное ядро с ядрышком. Клеточная оболочка прозрачная, плотная, упругая, не даёт цитоплазме растекаться, придаёт ей определённую форму. Некоторые участки оболочки более тонкие — это поры, через них происходит связь между клетками.Таким образом, клетка — это единица строения растения.

При изготовлении временных микропрепаратов необходимо соблюдать следующую последовательность операций:

  • 1. Вымыть и тщательно вытереть предметное и покровное стекла. Чтобы не сломать очень хрупкое покровное стекло, надо поместить его в складку салфетки между большим и указательным пальцами правой руки и осторожно вытереть его круговыми движениями пальцев.
  • 2. Нанести на предметное стекло пипеткой каплю жидкости (воды, глицерина, раствора, реактива или красителя).
  • 3. Сделать срез изучаемого органа при помощи лезвия. Лезвие должно быть очень острым.
  • 4. Выбрать самый тонкий срез, перенести его с помощью препаровальной иглы или тонкой кисточки в центр предметного стекла в каплю жидкости.
  • 5. Закрыть срез покровным стеклом так, чтобы под него не попал воздух. Для этого покровное стекло взять двумя пальцами за грани и подвести под углом нижнюю грань к краю капли жидкости и плавно его опустить.
  • 6. Если жидкости много, и она вытекает из-под покровного стекла, удалить ее при помощи фильтровальной бумаги. Если же под покровным стеклом остались места, заполненные воздухом, то добавить жидкость, поместив ее каплю рядом с краем покровного стекла, а с противоположной стороны фильтровальную бумагу .

Перед учителями биологии и руководителями кружков рано или поздно встает задача изготовить учебный микропрепарат. Какое же вещество, способное надолго зафиксировать биологический объект, и как сделать эту процедуру простой и доступной. Известные бальзамы (смолы-фиксаторы) никогда не относились к легкодоступным веществам, особенно в удалении от крупных городов. Кроме того, говорят, что вещества эти не безвредны. И, наконец, сам процесс их использования довольно непрост.

Для изготовления препарата можно использовать клей ПВА. Важно, чтобы препарат был влажный, хорошо смоченный, а клей - свежий и чуть разбавленный чистой холодной кипяченой водой до нужной концентрации (клей представляет собою эмульсию и легко разводится). После нескольких проб и ошибок нужную концентрацию получится составлять и определять без труда.

Затем, на чистое предметное стекло наносят каплю воды - кипяченой или дистиллированной. Воду надо аккуратно удалить чистой, не оставляющей волосков тканью или фильтровальной бумагой так, чтобы стекло было чуть влажным. Это, как и влажность образца, способствует равномерному (без пузырьков) смачиванию. На подготовленную поверхность нужно нанести небольшую каплю заранее приготовленного клея ПВА так, чтобы не появились пузырьки воздуха. Они иногда и не мешают, но внешний вид препарата портят. В эту каплю аккуратно переносят заранее подготовленный срез или образец, например, предварительно умерщвленную горячей водой дафнию. Затем плавным наклонным движением надо сверху положить покровное стекло, также чистое и слегка влажное. Слой клея между стеклами должен быть как можно более тонким.

Если что-то не удалось, а образец ценный и достаточно крупный, почти всегда, в отличие от смол, есть возможность его отмыть простой водой и процедуру повторить. Излишки клея аккуратно смываются тонкой струйкой воды; нужно следить, чтобы она не затекала между стеклами. Покровное стекло необходимо придерживать. Чуть мутноватые остатки воды можно аккуратно удалить фильтровальной бумагой или полоской тонкой ткани без ворса. биология микропрепарат приготовление способ

Готовые препараты надо разложить в теплом сухом месте. Индикатором готовности препарата служит его прозрачность. В зависимости от очень многих факторов высыхание до прозрачного состояния продолжается от одной до четырех недель. Бывает, что слишком толстый слой клея или клей, загрязненный примесями, полностью прозрачным не становится - это несколько ухудшает изображение, но благодаря небольшой глубине резкости микроскопа даже такие препараты доступны для изучения.

Нет гарантии, что этот метод можно применять для изготовления любых препаратов, поскольку некоторые из них требуют окрашивания, а красители могут взаимодействовать с клеем .

Т.Н. Лашкина, учитель биологии и экологии средней школы № 23, из г. Сызрань предлагает следующий способ приготовления микропрепаратов. Можно взять обыкновенный желатин, залить его водой для набухания. Затем в столовую ложку набрать немного набухшего желатина (без воды) и нагреть над огнем. Когда желатин разойдется (не надо, чтобы он закипал), капнуть его на предметное стекло. В эту каплю положить образец и закрыть покровным стеклом, хорошо придавить пальцем его для равномерного распределения желатина. Микропрепарат готов.

Вместо покровного стекла можно использовать целлофан, если нет покровных стекол. Кроме того, целлофан имеет одно преимущество: микропрепарат нельзя раздавить, т.к. целлофан эластичен и не трескается, как покровное стекло.

С желатином надо работать быстро, иначе он застывает. Но если такое случится, то достаточно подержать стекло над огнем - и желатин вновь станет жидким. Желатин безвреден, доступен и очень экономичен .

Государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Башкирский государственный медицинский университет»

Министерства здравоохранения и социального развития

Российской Федерации

Кафедра фармакогнозии с курсом ботаники и основ фитотерапии

«9» _сентября _____2012 г.

Дисциплина Ботаника Специальность060301 Фармация

Курс1 (очное отделение) Семестр 1

Раздел: «Учение о клетке. Эргастические и секреторные вещества в растительной клетке»

Лабораторная работа № 1

На тему: «Оптические микроскопы. Особенности ботанической микротехники. Осмотические свойства растительной клетки»

Лабораторная работа № 2

На тему: «Строение клеточной стенки. Пластиды, запасные и минеральные включения»

студентов

Уфа 2012
Лабораторная работа № 1

Тема занятия: «Оптические микроскопы. Особенности ботанической микротехники. Осмотические свойства растительной клетки»

1. Актуальность. Изучение приемов ботанической микротехники является необходимым условием для усвоения практических навыков по разделу «Цитология, гистология и анатомия растений». Изучение строения растительной клетки и ее осмотических свойств дает представление о клеточной организации растительных организмов, особенностях строения и отличия от животных.

2. Цели занятия:

1. Приобрести навыки работы с микроскопом;

2. Приобрести навыки приготовления временных микропрепаратов

3. Приобрести навыки ботанической микротехники для микроскопического анализа цельного, резаного и порошкованного лекарственного растительного сырья;

4. Изучить особенности строения растительной клетки

5. Изучить свойства растительной клетки

знать :

· устройство микроскопа и правила работы с ним;

· историю изучения клетки, постулаты клеточной теории;

· строение прокариотической клетки;



· строение эукариотической клетки, ее основных органоидов;

· особенности строения растительной клетки.

Для формирования профессиональных компетенций студент должен уметь :

· приготовить микропрепарат;

· рассмотреть микропрепарат при малом и большом увеличении микроскопа;

· найти органы клетки;

· провести реакции плазмолиза и деплазмолиза, дать теоретическое обоснование;

Для формирования профессиональной компетенции студент должен владеть :

· ботаническим понятийным аппаратом;

· техникой микроскопирования и гистохимического анализа микропрепаратов растительных объектов.

3. Необходимые базисные знания и умения :

· современные представления о строении прокариотической и эукариотической клетки, их отличия.

· устройство микроскопа.

4. Продолжительность внеаудиторной работы – 2 академических часа (90 мин).

Вопросы для самоподготовки:

1. Микроскоп. Механическая и оптическая системы.

2. Правила работы с микроскопом

3. Рабочее расстояние. Разрешающая способность. Общее увеличение.

4. Клетка. История изучения. Клеточная теория

5. Отличие растительной клетки от грибной и животной

6. Строение клетки. Ядро, строение, функции.

7. Органоиды растительной клетки. Строение, функции

8. Цитоплазма. Строение, функции

9. Вакуоль, строение, функции

Пояснение к заданиям

Микроскоп.

Микроскоп - оптико-механическая система, позволяющая получать сильно увеличенное изображение предметов, размеры которых лежат далеко за пределами разрешающей способности невооруженного глаза. Разрешающая способность глаза 0,15 мм. Разрешающая способность световых микроскопов в 300-400 раз выше разрешающей способности невооруженного глаза и равна 0,1-0,3 мкм.

В микроскопе различают оптическую и механическую системы. Оптическая система состоит из осветительного аппарата, объектива и окуляра. Механическая система состоит из револьвера, тубуса, штатива, предметного столика, макро и микровинтов.

Осветительный аппарат включает в себя:

Конденсор (предназначен для наилучшего освещения, регулирования резкости изображения);

Ирисовую диафрагму (предназначена для регулирования диаметра пучка света и глубины поля зрения);

Зеркало (предназначено для направления лучей от источника света в конденсор).

Объектив представляет собой наиболее важную часть оптической системы. Объектив дает изображение объекта с обратным расположением частей. При этом он выявляет («разрешает») структуры, недоступные невооруженному глазу.

Окуляр служит для наблюдения изображения, построенного объективом. Диафрагма окуляра определяет границы поля зрения. В общем, объектив и окуляр и обеспечивают -разрешающую способность микроскопа и определяют общее увеличение микроскопа (общее увеличение микроскопа определяется, как произведение увеличения окуляра объектива).

Механическая система микроскопа предназначена для монтирования частей оптической системы.

Работа с микроскопом

1. Микроскоп установить напротив левого плеча, освободить место перед собой для альбома. Поставить объектив в рабочее положение. О правильности установки объектива следует судить по щелчку, который ощущается при вращении револьвера. Расстояние между объективом и предметным стеклом должно быть около 1 см. Работу с микроскопом всегда начинают с малого увеличения.

2. Открыть полностью диафрагму. Поднять конденсор до уровня предметного столика. Навести свет при помощи вогнутого зеркала так, чтобы все поле было освещено ярко и равномерно.

3. Приготовленный микропрепарат положить на предметный столик так, чтобы один и срезов был расположен точно под объективом. Для фиксации микропрепарата предметное стекло прижать клеммой.

4. С помощью макровинта установить необходимое фокусное расстояние для получения четкого изображения в микроскопе. Откорректировать расстояние микровинтом.

5. Перед переводом микроскопа на большее увеличение выбрать нужное место среза, поставить его в центр поля зрения, и только после этого сменить объективы путем осторожного вращения револьвера.

6. После окончания работы нужно перевести микроскоп на малое увеличение и убрать микропрепарат.

7. После работы микроскоп следует закрыть колпаком для защиты or пыли.

Методика приготовления временных микропрепаратов

1. Объект необходимо взять в левую руку и зажать тремя пальцами, в правой руке надо держать безопасную бритву или лезвие.

2. Поверхность объекта выровнять, чтобы плоскость среза была перпендикулярна оси органа. Срезы делают движением бритвы на себя.

3. На середину предметного стекла пипеткой нанести 2-3 капли воды и на кончике препаровальной иглы перенести наиболее тонкие срезы, закрыть объект покровным стеклом. Жидкость не должна вытекать из-под покровного стекла.

4. Приготовленный препарат положить на предметный столик, рассмотреть при малом и большом увеличениях.

5. Кроме временных препаратов, для исследования объектов используют постоянные препараты. Включающей жидкостью в них является глицерин с желатиной или канадский бальзам.

6. При окрашивании препарата следует учесть, что под действием концентрированных кислот органические включения в клетке могут обуглиться, минеральные включения (кристаллы, друзы, цистолиты) - совсем исчезнуть или изменить свою форму.

7. Нельзя вынимать препарат из-под объектива х40, т.к,. рабочее расстояние его равно 0,6 мм и легко можно испортить фронтальную линзу.

Клетка

Клетка - основная структурная и функциональная единица всего живого. Клетки впервые описал Роберт Гук в середине семнадцатого века (1665 г), рассматривая кусочек пробки. Знания о клетке расширялись с усовершенствованием микроскопа. К середине девятнадцатого века было накоплено достаточно знаний о клетке - открытие ядра, пластид, деления клеток и др. Все знания о клетке были обобщены на рубеже 30-40х г. 19 века ботаником М. Шлейденом и зоологом Т.Шванном в виде клеточной теории.

Главные тезисы (постулаты) клеточной теории:

1. клетка - структурная и функциональная единица всего живого;

2. многоклеточный организм - это сложно организованная, интегрированная система, состоящая из функционирующих и взаимодействующих клеток;

3. все клетки гомологичны по строению;

4. «клетка от клетки». Принцип преемственности клеток путем деления былобоснован в 1958 г. немецким ученым Р. Вирховым.

Форма, строение и размеры клеток очень разнообразны. Растительная клетка состоит из протопласта, оболочки или клеточной стенки и вакуоли .

Протопласт включает: цитоплазму, ядро, пластиды, митохондрии .

Цитоплазма - часть протопласта, заключенная между плазмаллемой и ядром. Основу цитоплазмы составляет ее матрикс, или гиалоплазма – сложная, бесцветная коллоидная система. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему, обеспечении взаимодействия между ними в процессах клеточного метаболизма. В цитоплазме осуществляется большая часть процессов клеточного метаболизма, кроме синтеза нуклеиновых кислот.

Ядро - обязательная и главная часть живой клетки всех эукариотов. Функции ядра: хранение и воспроизводство наследственной информации, управление обменом веществ и почти всех процессов, происходящих в клетке, синтез нуклеиновых кислот, синтез белка. Ядро окружено оболочкой, состоящей из двух мембран, несущих очень крупные поры. Внутреннее содержимое ядра называется ядерным соком, или нуклеоплазмой. В ядерный сок погружены одно или несколько ядрышек.

Митохондрии органоиды клетки, форма, величина и число которых – постоянно меняются. Основная функция - обеспечение энергетических потребностей клетки путем окисления энергетически богатых веществ (сахаров) и синтеза АТФ и АДФ. Митохондрии окружены двумя мембранами, внутренняя образует выросты - кристы. Митохондрии, как и пластиды, являются полуавтономными органоидами, т.к. содержат в матриксе ДНК и рибосомы.

Пластиды характерны только для растений. Различают три типа пластид: хлоропласты, хромопласты и лейкопласты . Основная функция хлоропластов – фотосинтез, лейкопластов -запасание питательных веществ и хромопластов - окраска цветов и плодов. Хлоропласты состоят из двойной мембраны, матрикса, тиллакоидов, объединенных в граны, ДНК, рибосом, зерен первичного крахмала.

Комплекс Гольджи - система дисковидных мешочков и пузырьков, окруженных мембранами. Выполняет функции синтеза, накопления и выделения некоторых полисахаридов (пектинов, слизей и др.), вторичных метаболитов; образования вакуолей и лизосом; распределения и внутриклеточного транспорта некоторых белков; участвует в построении цитоплазматической мембраны.

ЭПС (эндоплазматическая сеть) – ограниченная мембранами система субмикроскопических каналов. ЭПС подразделяется на гладкую и шероховатую. Функции шероховатой ЭПС: синтез белков; направленный транспорт макромолекул и ионов; образование мембран; взаимодействие органелл. Функция гладкой ЭПС - синтез липофильных соединений.

Вакуоль - полость в клетке, окруженная мембраной (тонопластом), и заполненная клеточным соком. Клеточный сок представляет собой водный раствор различных веществ – продуктов жизнедеятельности протопласта. Функции вакуолей: накопление запасных веществ и шлаков; поддержание тургора клетки; регуляция водно-солевого баланса клетки.

Клеточная стенка отделяет клетку от окружающей среды. Основу ее составляют молекулы целлюлозы, которые сгруппированы в микрофибриллы и фибриллы. Молекулы целлюлозы погружены в матрикс, который состоит из полисахаридов, имеющих более разветвленную структуру - гемицеллюлоз и пектинов, а также воды. Клеточная стенка очень прочная, и в то же время, эластичная. Прочность ей придают молекулы целлюлозы, эластичность - матрикс. Клеточная стенка выполняет формообразующую и механическую функции, обеспечивает защиту протопласта, противостоит высокому осмотическому давлению вакуоли, через клеточную стенку происходит транспорт веществ.

1) Временные препараты

Для изучения растительных объектов с помощью светового микроскопа необходимо приготовить микропрепарат. Микропрепараты, не предназначенные для длительного хранения, называются временными. Изучаемый объект помещают на предметное стекло в каплю воды, глицерина, раствора, реактива или красителя и накрывают покровным стеклом. Такие препараты можно хранить в течение нескольких дней, поместив во влажную атмосферу.

2) Постоянные препараты

Постоянные препараты готовятся по специальным методикам, обеспечивающих их хранение в течение десятков лет. К постоянным препаратам относятся мазки, тотальные препараты и срезы. Мазки используются при изучении клеток крови, культур микроорганизмов, изолированных тканевых клеток. Тотальные препараты представляют собой отдельные прозрачные и тонкие объекты Учебные срезы можно сделать вручную, с помощью бритвы. Однако качественные срезы с заданной толщиной 10...22 микрометра обычно изготавливают с помощью специальных приборов – микротомов. Такие срезы часто называют микротомными препаратами. Для получения более тонких срезов (0,01...0,05 мкм, или 10...50 нанометров) используют ультрамикротомы.

Кратко рассмотрим основные этапы приготовления постоянных препаратов.

1. Фиксация материала. Сразу после окончания фиксации производится промывка материала или водой (после водных фиксаторов), или 80%-ным спиртом (после спиртовых фиксаторов). Количество смен промывных жидкостей – не менее 3. Время – до 24 часов.

2. Обезвоживание в спиртах возрастающей концентрации. Параллельно происходит уплотнение материала. Последовательное перемещение материала через ряд растворов называется проводка. После водных фиксаторов используется 8 смен спирта: 20%, 40%, 80%, две смены по 96%, две смены по 100%. После спиртовых фиксаторов – 4 смены спирта: две смены по 96% и две смены по 100%. В каждой смене материал выдерживается по 1 часу.

3. Просветление. Это пропитывание материала растворителем парафина – ксилолом (бензолом, хлороформом). Образец помещается на 1 час последовательно в каждый из последующих растворов: 3 части спирта + 1 часть ксилола, затем 2 части спирта + 2 части ксилола, затем 1 часть спирта + 3 части ксилола, затем две смены ксилола.

4. Заливка в парафин. Это замещение ксилола парафином. Образец помещают в смесь ксилола и парафина при температуре 55...57 градусов и оставляют в термостате при этой температуре до полного испарения ксилола (от нескольких часов до нескольких суток). Затем при температуре 55...57 градусов производится проводка через парафин I (6...12 часов), парафин II (6...12 часов) и заливка в парафин III. Парафины I, II, III отличаются только чистотой: парафин III – это окончательная среда, которая должна обладать наибольшей чистотой. В итоге получаются парафиновые блоки, в которых заключены образцы материала. Эти блоки можно резать в любом направлении.

5. Окрашивание срезов. Парафиновые срезы наклеивают на чистое предметное стекло. В качестве клея можно использовать смесь белка куриного яйца с глицерином (в соотношении 1: 2) с добавлением антисептика (тимола или фенола). Обычно производят депарафинирование срезов. Для этого стекла с наклеенными срезами проводят через ксилол, спирты убывающей концентрации (100%, 96%, 80%, 70%) и дистиллированную воду. Время нахождения в каждой среде – 2...3 минуты. Далее окрашивают согласно методикам.

6. Обезвоживание и просветление окрашенных срезов. Выполняется путем проводки через спирты возрастающей концентрации, а затем через ксилол.

7. Заключение в среды (заливка). Для длительного хранения препаратов их необходимо заключить в среду, предохраняющую препарат от окисления воздухом и от поражения грибками. Для заливки используются специальные смолы (канадский бальзам, пихтовый бальзам), которые растворяют в ксилоле до консистенции жидкого меда. Каплю такого раствора наносят на срез и покрывают покровным стеклом.

6. Химический состав клеточного вещества. Микро и макроэлементы.

В составе клетки обнаружено более 80 химических элементов, при этом каких-либо спеуиальных элементов, характерных только для живых организмов, не выявлено. Однако, только в отношении 27 элементов известно, какие функции они выполняют. остальные 53 элемента, вероятно, попадают в организм из внешней среды.

1. Макроэлементы

Они составляют основную массу вещества клетки. На их долю приходится около 99% массы всей клетки. Особенно высока концентрация четырех элементов: кислорода (65-75%), углерода (15-18%), азота (1.5-3%) и водорода (8-10%). К макроэлементам относят также элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это, например, калий, магний, фосфор, сера, железо, хлор, натрий.

2. Микроэлементы К ним относятся преимущественно атомы металлов, входящие в состав ферментов, гормонов и

других жизненно важных веществ. В организме эти элементы содержатся в очень небольших количествах: от 0,001 до 0,000001%; в числе таких элементов бор, кобальт, медь, молибден, цинк, йод, бром и др.

3. Ультрамикроэлементы

Концентрация их не превышает 0,000001%. К ним относят уран, радий, золото, ртуть, бериллий, цезий и другие редкие элементы. Физиологическая роль большинства этих элементов в организмах растений, животных, грибов и бактерий пока не установлена.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то